Use of environmental sensors and sensor networks to develop water and salinity budgets for seasonal wetland real-time water quality management

نویسندگان

  • Nigel W. T. Quinn
  • Ricardo Ortega
  • Patrick J. A. Rahilly
  • Caleb W. Royer
چکیده

Management of river salt loads in a complex and highly regulated river basin such as the San Joaquin River Basin of California presents significant challenges for current Information Technology. Computerbased numerical models are used as a means of simulating hydrologic processes and water quality within the basin and can be useful tools for organizing Basin data in a structured and readily accessible manner. These models can also be used to extend information derived from environmental sensors within existing monitoring networks to areas outside these systems based on similarity factors – since it would be cost prohibitive to collect data for every channel or pollutant source within the Basin. A common feature of all hydrologic and water quality models is the ability to perform mass balances. This paper describes the use of a number of state-of-the-art sensor technologies that have been deployed to obtain water and salinity mass balances for a 60,000 ha tract of seasonally managed wetlands in the San Joaquin River Basin of California. These sensor technologies are being combined with more traditional environmental monitoring techniques to support real-time salinity management (RTSM) in the River Basin. Two of these new technology applications: YSI-Econet (which supports continuous flow and salinity monitoring of surface water deliveries and seasonal wetland drainage); and electromagnetic salinity mapping (a remote sensing technology for mapping soil salinity in the surface soils) – have not previously been reported in the literature. Continuous sensor deployments that experience more widespread use include: weather station sensor arrays – used to estimate wetland pond evaporation and moist soil plant evapotranspiration; high resolution multi-spectral imagery – used to discriminate between and estimate the area of wetland moist soil plant vegetation; and groundwater level sensors – used primarily to estimate seepage losses beneath a wetland pond during flood-up. Important issues associated with quality assurance of continuous data are discussed and the application of a state-of-the-art software product AQUARIUS, which streamlines the process of data error correction and dissemination, is described as an essential element of ensuring successful RTSM implementation in the San Joaquin River Basin. 2009 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

assessment of the probable impacts of land use changes on water quality in shadeghan wetland using remotely sensed data

In this research, the evaluation of possible effects of land-use change on water quality in Shadegan wetland has been provided with the help of remote sensing data. The purpose of this research was to evaluate and compare user variations in 2000 and 2015 using Landsat satellite imagery (with ETM and OLI sensors) from the study area and processing them in the ERDAS software environment using the...

متن کامل

MULTIOBJECTIVE OPTIMIZATION OF SENSOR PLACEMENT IN WATER DISTRIBUTION NETWORKS DUAL USE BENEFIT APPROACH

Location and types of sensors may be integrated for simultaneous achievement of water security goals and other water utility objectives, such as regulatory monitoring requirements. Complying with the recent recommendations on dual benefits of sensors, this study addresses the optimal location of these types of sensors in a multipurpose approach. The study presents two mathematical models for ...

متن کامل

A decision support system for adaptive real-time management of seasonal wetlands in California

This paper describes the development of a comprehensive flow and salinity monitoring system and application of a decision support system (DSS) to improve management of seasonal wetlands in the San Joaquin Valley of California. The Environmental Protection Agency regulates salinity discharges from non-point sources to the San Joaquin River using a procedure known as the total maximum daily load ...

متن کامل

An Adaptive Congestion Alleviating Protocol for Healthcare Applications in Wireless Body Sensor Networks: Learning Automata Approach

Wireless Body Sensor Networks (WBSNs) involve a convergence of biosensors, wireless communication and networks technologies. WBSN enables real-time healthcare services to users. Wireless sensors can be used to monitor patients’ physical conditions and transfer real time vital signs to the emergency center or individual doctors. Wireless networks are subject to more packet loss and congestion. T...

متن کامل

DTMP: Energy Consumption Reduction in Body Area Networks Using a Dynamic Traffic Management Protocol

Advances in medical sciences with other fields of science and technology is closely casual profound mutations in different branches of science and methods for providing medical services affect the lives of its descriptor. Wireless Body Area Network (WBAN) represents such a leap. Those networks excite new branches in the world of telemedicine. Small wireless sensors, to be quite precise and calc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Modelling and Software

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2010